Aplicación de los sistemas neurodifusos a la interpretación automática de imágenes de satélite
Sinopsis del Libro
El gran auge de la teledetección unido al lanzamiento de diferentes satélites en los últimos tiempos ha potenciado el desarrollo de nuevas técnicas en el procesamiento digital de imágenes [Lillesand y Kiefer, 1994] [Chuvieco, 96]. La teledetección permite tener una observación remota de la superficie terrestre, lo que ayuda al estudio y conocimiento de fenómenos mesoescalares. La línea de investigación en Teledetección de los Océanos fue iniciada por el profesor Dr. D. Manuel Cantón Garbín a finales de los años 80, siendo sus estudios de investigación pioneros en España. Nuestro marco se centra en el reconocimiento de estructuras oceánicas en la cuenca de las Islas Canarias. La zona bajo estudio abarca la región comprendida entre los 20o y 40o N y los 9o y 19o O, incluyendo el Archipiélago Canario y la costa norte de África. La situación geográfica de las Islas Canarias entre la plataforma continental y el océano hace que esta región se encuentre sujeta a influencias de distinta naturaleza que generan características oceanográficas tales como: el afloramiento costero del noroeste de África, los remolinos mesoescalares procedentes del Mediterráneo (dando lugar a los giros fríos y cálidos) y la corriente de Canarias que fluye hacia el Ecuador a través del archipiélago Canario (dando lugar a estelas en las diferentes islas) [Tejera, 1996][García, 1998]. El estudio se basa en la información extraída del océano Atlántico en el archipiélago canario y afloramiento canario-saharanio mediante imágenes del sensor Advanced Very High Resolution Radiometer (AVHRR), que proporcionan mapas de temperatura de la superficie del mar (SST – Sea Surface Temperature). El reconocimiento de patrones se divide en una serie de etapas: adquisición de datos, extracción de características y clasificación. En la primera etapa nuestro trabajo obtiene dos tipos de datos de partida: simbólicos (HLKPs) y numéricos (a partir de las segmentaciones obtenidas por SEG). Uno de los objetivos alcanzados en esta fase en nuestro trabajo ha sido la propuesta de un nuevo conjunto de descriptores basados en momentos invariantes. Este nuevo conjunto de momentos invariantes se basa en los propuestos con anterioridad por otros autores, como [Hu, 1962], [Maitra, 1979], [Teague, 1980] y [Cantón, 1982], mediante la utilización de técnicas clustering jerarquizadas [Lozano, 1998]. La principal característica de los nuevos invariantes es su mejora a la hora de representar los objetos con un carácter más invariante y su facilidad de cómputo. La siguiente etapa en el reconocimiento de patrones es la selección de características relevantes. Hemos desarrollado una metodología de selección y validación de características. Esta metodología establece la integración de dos métodos: técnicas filtro (filter) y las redes bayesianas. Las técnicas filter utilizan funciones de evaluación de tipo filtro para la búsqueda de características en un subespacio del dominio, destacando CFS (Correlation – Based Filter Selection) [Hall and Smith, 1997] como aquella que mejores resultados ha obtenido. Un aspecto importante del aprendizaje es obtener un modelo que represente el dominio de conocimiento y que sea accesible para el usuario. Una representación del conocimiento que es capaz de capturar esta información sobre las dependencias entre las variables son las redes bayesianas (la segunda técnica empleada en esta metodología). Dichas dependencias simplifican la representación del conocimiento (menos parámetros) y el razonamiento (propagación de las probabilidades). La última etapa en el reconocimiento de patrones es la clasificación. Al igual que en la etapa anterior me gustaría, ya que nuestro estudio versa sobre los sistemas híbridos neurodifusos, introducir el concepto de computación suave (Soft Computing) [Zadeh, 1994] [Bonissone, 1997]. Este concepto es una metodología nueva que pretende integrar otras...
Ficha Técnica del Libro
Número de páginas 391
Autor:
- José Antonio Piedra Fernández
Categoría:
Formatos Disponibles:
MOBI, EPUB, PDF
¿Cómo descargar el libro?
Valoración
3.8
91 Valoraciones Totales